EEND-DEMUX: End-to-End Neural Speaker Diarization via...
Review Writer: Dongkeon Park (2024.01.29)
👁️🗨️ 1. Introudction
🗼2. Proposed EEND-DEMUX Framework
A. Model Architecutre
- EEND-DEMUX는 4개의 module로 구성
- MixtureEncoder, Demultiplexer, AttractorDecoder, SpeakerEncoder
🖼️ Figure
- MixtureEncoder
- Demultiplexer
- AttractorDecoder
- Posterior probability estimation & speaker existence
- SpeakerEncoder
B. Training Objective Functions
(1) Diarization loss ($\mathcal{L}{\textnormal{diar}}, \mathcal{L}{\textnormal{ext}}$)
(2) Demultiplexing loss ($\mathcal{L}{\textnormal{dis}}, \mathcal{L}{\textnormal{ort}}, \mathcal{L}_{\textnormal{spa}}$)
🧪 3. Experiments